|
In physics the Einstein æther theory, also called æ-theory, is a generally covariant modification of general relativity which describes a spacetime endowed with both a metric and a unit timelike vector field named the æther. The theory has a preferred reference frame and hence violates Lorentz invariance. ==History== Einstein-æther theories were popularized by Maurizio Gasperini in a series of papers, such as (Singularity Prevention and Broken Lorentz Symmetry ) in the 1980s. In addition to the metric of general relativity these theories also included a scalar field which intuitively corresponded to a universal notion of time. Such a theory will have a preferred reference frame, that in which the universal time is the actual time. The dynamics of the scalar field is identified with that of an æther which is at rest in the preferred frame. This is the origin of the name of the theory, it contains Einstein's gravity plus an æther. Einstein æther theories returned to prominence at the turn of the century with the paper (Gravity and a Preferred Frame ) by Ted Jacobson and David Mattingly. Their theory contains less information than that of Gasperini, instead of a scalar field giving a universal time it contains only a unit vector field which gives the direction of time. Thus observers who follow the æther at different points will not necessarily age at the same rate in the Jacobson–Mattingly theory. The existence of a preferred, dynamical time vector breaks the Lorentz symmetry of the theory, more precisely it breaks the invariance under boosts. This symmetry breaking may lead to a Higgs mechanism for the graviton which would alter long distance physics, perhaps yielding an explanation for recent supernova data which would otherwise be explained by a cosmological constant. The effect of breaking Lorentz invariance on quantum field theory has a long history leading back at least to the work of Markus Fierz and Wolfgang Pauli in 1939. Recently it has regained popularity with, for example, the paper (Effective Field Theory for Massive Gravitons and Gravity in Theory Space ) by Nima Arkani-Hamed, Howard Georgi and Matthew Schwartz. Einstein-æther theories provide a concrete example of a theory with broken Lorentz invariance and so have proven to be a natural setting for such investigations. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Einstein aether theory」の詳細全文を読む スポンサード リンク
|